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ABSTRACT

Detection and classification of breast cancer metastasis in
lymph nodes is a critical task towards improved patients’
diagnosis and treatment. The diagnostic procedure for
pathologists is tedious, time consuming and prone to errors
especially due to small-sized metastases. Pathologists rely
on TNM system in order to classify the extent of cancer
spread. TNM takes into consideration the size of the tumour
(T-stage), the spread to regional lymph nodes (N-stage) and
whether it has metastasised to other body parts (M-
stage). This short paper presents a method capable of
performing the pN-stage (pathologic N-stage) classification
of whole slide images (WSI), the major determinant of
patient’s prognosis and treatment. The pN-stage is predicted
by combining convolutional neural network (CNN) based
metastasis detector and a slide-level lymph node classifier
module. The method was evaluated on Camelyon16 and
Camelyon17 datasets which are challenging benchmark
datasets.

Index Terms— Camelyon17, Convolutional neural network,
Deep learning, Metastasis detection, Classification, pN-
staging

1. INTRODUCTION

The breast cancer TNM (Tumor, Node, Metastasis) staging
system[1] is the most common way that doctors stage breast
cancer. The most critical part for the TNM stage
classification process is to assess whether the breast cancer
has spread to the regional lymph nodes (N-stage). However,
due to time pressure, workload and other factors the
diagnostic process followed by pathologists to detect
metastases is prone to errors. This work aims towards
reducing doctor’s workload and help towards speeding up
the diagnosis procedure.

Over the last few years, developments in hardware and more
specifically improvements in the gpu-related technology,
have allowed the extensive use of convolutional neural
networks to address highly complex computer vision

tasks[2]. Building on this notion, CNNs have been recently
developed to perform computer assisted metastasis detection
for breast cancer. Indicatively a relevant study [3],
suggested the use of CNNs as a tool capable to detect not
only breast cancer in sentinel lymph nodes but also other
forms of cancer (such as prostate), while increasing the
objectivity of diagnosis. Another study[4] suggested CNN
based lymph node breast tumor detection framework which
obtained state-of-the-art results on the Camelyon16 [5]
dataset.

The pipeline presented here consists of three main modules:
1) a tissue region extraction module,
2) a CNN based metastasis detection module,
3) a WSI-level classification module.

More details regarding the aforementioned modules are
provided in the following paragraphs.

The framework was evaluated on data from the contests
Camelyon16 and Camelyon17[6], which included WSI from
5 different medical centers.

2. METHOD

In this study an efficient framework for pN-stage prediction
based on patient’s histological lymph node whole slide
images is proposed,



Figure 1 illustrates an overview of the framework.

Initially the tissue region of each WSI is extracted and
divided into smaller patches, which are fed as input to a
convolutional neural network to produce a probability
heatmap, indicative of the detected metastases. The heatmap
is thresholded and a vector of features gets extracted in
order to be utilized by the

following random forest classifier which predicts the WSI
level label. Once every WSI of each patient is properly
labeled, following the set of rules described in Camelyon 17
each patient gets classified to the respective pN-stage.

An important aspect of the method is that during training a
scheme of hard negative mining is utilized involving
humans in the loop. More specifically, after careful visual
inspection of the patches it was chosen whether they would
be added to the existing set of patches, for the following
retraining step or not. This way patches with possibly
missanotated ground truth were excluded, allowing the
network to reach higher accuracy levels.

2.1. Patch Extraction

An average WSI is approximately 200000 x 100000 pixels
on the highest resolution level (zero level) and
approximately 7.5 GB. Hence processing the whole image at
once, is highly

inefficient due to the enormous computation time required.
The first step of the process is to

isolate the part of the WSI that contains potentially useful
information, the tissue region.

This way the vast percentage of the image which is assumed
to be background is not used either for training purposes or
for the inference process. Recent studies[7],[8] indicated
that the tissue regions can be efficiently extracted using a
variety of thresholds ranging such as Otsu thresholding[9] of
the respective grayscale image or thresholding of the image
in other color-spaces (i.e. HSV, HSL etc) which can
potentially reveal some additional useful pieces of
information.

A worth mentioning observation made by visual inspection
is that metastatic regions can be located even at the edge of
the tissue regions. Therefore, the need for a highly accurate
tissue region extraction approach is clear. After extensive
experimentation on WSIs from both Camelyon16 and
Camelyon17 it was found that the use of Otsu thresholding

on the grayscale image followed by a series of
morphological image operations allows the extraction of a
quite detailed tissue mask from the original WSI. For the
next step of the pipeline, the tissue mask extracted gets
divided into patches of 299*299 size.

2.2. Data Augmentation

Having acquired images from 5 different centers the
classification of the WSIs has been proved to be a problem
that requires a robust artificial intelligence approach capable
of generalizing well. The variety of hematoxylin and eosin
(H&E) stained color due to the different chemical
preparation process performed by each center, was
addressed with an extensive color augmentation scheme.
More specifically random hue, saturation, brightness, and
contrast changes were introduced to each patch included in
the training process of the CNN. In addition, taking
advantage of the fact that the histopathology images exhibit
rotational symmetry, the data were augmented by random
rotations and flips.

2.3. Convolutional Neural Network (CNN)



For the actual training Tensorflow and an architecture based
on Inception-V1 was used. The network converged after
10 epochs.

2.4. Heatmap Generation

The CNN was used to produce 299*299 pixels probability
heatmaps, which were combined to produce a full WSI
dimensions heatmap at level 7. These heatmaps were
thresholded with t=0.85, in order to extract a list of more
morphological features per WSI, which were fed as input to
a random forest classifier that assigned them a “negative”,
“itc”, “micro” or “macro” label. The list of features chosen
includes but is not limited to the following:

Features extracted from thresholded probability heatmap

area of ellipse
fitting the biggest
tumor

major axis of ellipse
fitting the biggest
tumor

average probability
of biggest tumor

maximum
probability of the
WSI

mean of the
probabilities in the
WSI

variance of the
probabilities in the
WSI

2.5. Whole Slide Image Classification and pN-staging

The feature vector extracted from the previous step is fed as
input to a random forest classifier in order to assign a WSI-
level label. This extra module was used in order to
compensate for the imperfections of the extracted heatmap
and the errors that are introduced to the measurements of the
major axes of the segments included. The final step is to use
the set of rules provided by Camelyon17 in order to extract
the patient level pN-stage.

3. RESULTS

Mean Intersection Over Union (IoU) in patch level is 0.71
from validation slides for heatmap threshold equal to 0.85.
Smaller threshold values were also tested but they allowed
more false positives detections.

4. DISCUSSION

The prevalent approaches of pN-stage predictions focus on
patch-level classifications, due to the size of the whole slide
images which does not allow to perform the training at the
original size, because of hardware restrictions. At the same
time the number of the fully annotated whole slide images is
small making making the training process harder and the
danger of overfitting imminent. For the aforementioned

reasons, techniques like l2 normalization, dropout and batch
normalization were integral parts of the proposed method.

A critical limitation of this approach is that, despite the fact
that the classifier reaches very high accuracy scores, false
positive alarms still occur. Hence, WSIs which contain only
ITCs are rarely labeled properly as a number of ITCs are
often miss-labeled at segment level as “micros”. Thus the
focus of this study was to achieve the highest
possible accuracy for negative and micro, macro
metastases.

5. CONCLUSION

A deep learning framework was proposed in this study in
order to predict the pN-stage from whole slide
histopathology images, performing CNN based metastasis
detection and random forest based lymph node
classification.

The performance of the method is proven to be competitive
with other state of the art algorithms, after being tested on
the Camelyon dataset.

Future work will include creating a new end-to-end deep
learning framework possibly fully automated aiming to
achieve better results for the pN-stage prediction from WSI.
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